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Introduction 

This aerodynamic flow field investigation of a double delta wing 
is the third part of an overall fluid-structure interaction investigation 
that was initiated in January 1990.  It was preceded by investigations 
of a simple delta1 wing and the Onera M-6 wing2.  The delta wing was 
investigated as a first step toward characterization of vortex 
breakdown.  The characterization was a crucial first step toward 
understanding the vortex flow and the breakdown process, not in 
terms of indicators, but in terms of fundamental mechanisms 
associated with breakdown.  The Onera wing was selected because it 
was one of the first test cases for verification of the TEAM code and 
both extensive computational and experimental data are available. 

The advantage of delta shaped wings are well documented.   In 
addition to enabling aircraft to perform efficiently at supersonic cruise 
conditions, the delta shape provides high lift and enhanced 
maneuverability at low speeds and moderate angles of attack.  It has 
been demonstrated experimentally and computationally that the lift 
and maneuverability enhancements are produced by the strong 
vortices which originate at the sharp leading edges.   However, it is 
also well recognized this vortex flow at high angles of attack may also 
cause problems with stability and control as well as premature 
structural fatigue at high angle of attack.  In particular, at high angles 
of attack the vortex increases in size and undergoes large scale 
turbulent dissipation.  This breakdown in organized vortex structures 
can account for up to a 30% loss of lift which can induce moments 
about the center of gravity resulting in stability and control problems. 

An improved understanding of the vortex breakdown process 
could allow a more effective method of transferring the aerodynamic 
loads from a computational fluid dynamic model to a corresponding 
structural response model.  Also, additional insight concerning the 
structural response could be gained that would allow improved 
designed methods to mitigate against premature structural fatigue. 
Since the observance of vortex bursting by Peckham and Atkinson3, 
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the prediction of vortex bursting have been an active research area. 
All theories currently predict vortex breakdown to occur within a 
given range of swirl angles and to be sensitive to the axial pressure 
gradients.   However, the theory does not provide flow detail in the 
vortex breakdown region nor the breakdown location with sufficient 
accuracy to compare with experimental results. 

Approach 

The geometry chosen for this research is based on the 
dimensions of previous experimental and computational studies4'5-6-7. 
Figure 1 is a non-dimensionalized planform view of the cropped 
double delta wing used in this study. This configuration is highly 
representative of today's modern aircraft.   The strake or leading edge 
extension (LEX) and the wing have 76 and 40 degree sweep, 
respectively.   This geometry is well suited for the problem at hand 
because of the significant length of the LEX and the large vortex 
structure at high angles of attack.  Because zero sideslip was 
implemented only half the model was required with symmetry 
assumed at the centerline.   Sharp leading edges were used and based 
on experimental evidence8, the path of the leading edge vortex is 
significantly influenced by the leading edge shape.  The edge shape 
will be discussed later in this report.  Tests were for angles of attack 
of 0, 10, 16, and 27.4 degrees for inviscid calculations.  A database 
created from Figure 1 was used to develop a three dimensional grid. 
This grid was then used in a finite volume flow solver to calculate 
specific flow properties over the model. 

Grid Generation 

The grid generation utilized for this study was Gridgen Version 
8.  This is a menu driven three dimensional interactive multiple block 
grid generation software package9 created by MDA Engineering.  The 
interactive capability allowed easy refinement of the grid during the 



grid generation process.   The computation time required to generate 
the volume grid was 15 minutes, which was reasonable compared to 
binary conversions, file transfers, and long queuing time necessary on 
a Cray super computer.  Figure 2 is the final C-H grid used for this 
study.  A total of 631,980 grid points defined the entire flow field. 
Both the surface grid and the three dimensional volume grid were 
generated on a Silicon Graphics Iris 4D workstation.  The majority of 
the grid required an algebraic solver based on transfinite 
interpolation, but near the solid boundaries, an elliptic solver was used 
to patch the discontinuities that existed between the solid boundaries 
and the fluid boundaries.   The Thomas-Middlecoff elliptic solver with 
fixed boundaries proved beneficial in resolving major grid 
discontinuities.  A total of seven blocks were created for the near and 
far flow field.  The model's upper and lower surfaces each used 45 grid 
points in the stream wise direction and 21 in the spanwise direction. 
The leading edge surface was defined by 45x15 grid points.   Grid 
clustering was used along the leading edge to help resolve the flow 
properties in calculating the shear layer that separates and eventually 
forms the leading edge vortex.   The fluid boundary was extended 
twelve chord lengths in all directions.   The mesh size for the far field 
boundary in the upstream direction was maintained as uniformed and 
as large as possible. The Gridgen code has a subroutine to check for 
grid skewness and negativity, neither of which existed in the grid. 
Once the initial grid was developed, computational runs were made. 
Based on these results, the grid was continually modified until 
solutions were obtained that compared favorably to experimental and 
computational data. This consumed a vast amount of research time 
because no standard gridding procedure exists for all configurations of 
interest. 

Computational Algorithm 

The computational algorithm used for the inviscid computation 
was the Three-dimensional Euler/Navier-Stokes Aerodynamic Method 
(TEAM)10 code.   This is a finite volume multistage time-stepping 



algorithm.   Convergence can be enhanced using enthalpy damping, 
second and fourth order viscous dissipation, and a choice of five 
numerical dissipation schemes.  The TEAM code had been developed 
to work in all flight regimes from subsonic to hypersonic.   Verification 
of leading edge vortical flow has been documented using the code10. 

For this study, inviscid computation was performed at a mach 
number of 0.25 and the previously stated angles of attack.  Implicit 
residual smoothing in the i,j, and k directions enhanced the 
convergence time.  Additionally, a standard adaptive viscous 
dissipation scheme that blended second and fourth order differences 
was evoked.   The values chosen for the dissipation relied on the free 
stream mach number and the coarseness of the grid.  The numerical 
dissipations were evaluated twice per time step and the default values 
for the four-stage time stepping scheme were 1/4, 1/3, 1/2, and 1. 
Convergence based on root-mean-squared averaging of the mass flux 
residual was obtained in 1000-2000 iterations. 

Solutions 

Figures 3 to 14 show results obtained for the double delta wing 
and these were compared to results obtained by Kern4 and show 
excellent agreement for the flow visualization using trace particles, 
swirl magnitude, and pressure coefficient.  These figures support the 
well established trends in the vortex patterns over double delta wings. 
At zero degrees the strake vortex is weak and the wing vortex is 
almost nonexistent.  As the angle of attack is increased from 0 to 16 
degrees the strake vortex increases in strength and after the strake- 
wing juncture moves outward over the wing surface.  The two vortices 
become entwined between 0 and 10 degrees, and this phenomenon is 
more pronounced at 16 degrees.  At these lower angles of 10 and 16 
degrees the vortex will burst some distance downstream of the trailing 
edge.  As the angle is still increased the vortex burst region moves 
upstream and will eventually exist over the delta wing (Figure 6 and 7). 
Figure 7 shows in greater detail trace particles emanating from all the 



surface grid points at 27.4 degrees.   Note how the vortex core 
maintains the same diameter upstream of the burst region.   In Figure 
7, the onset of vortex breakdown is approximately two-thirds the 
chord length from the strake apex.  At this point, the vortex core 
rapidly expands causing a decrease in the axial velocity. This leads to 
an adverse pressure gradient resulting in reverse and separated flow. 
Although the vortex breakdown has already occurred at 27.4 degrees, 
there is a substantial amount of lift created by the otherwise highly- 
structured vortex upstream of breakdown.  These overall trends have 
been well established in existing literature and were observed in the 
initial investigation involving a 70 degree sweep single delta wing1. 
Figures 8 and 9 reiterate the above discussion by showing the three 
dimensional aspects of the vortex development at 10 and 27.4 
degrees.   At 10 degrees, the region of vorticity is relatively close to the 
wing surface and limited in volume compared to the vortex field at 
27.4 degrees. 

A comparison between surface grid structures used by Kern and 
the one used in this study is shown in Figure 10. What is readily 
observable is that Kern used a larger amount of grid clustering along 
the leading edge because the focus of that study was to examine the 
effects of deployable surfaces in the strake-wing junction.  This 
resulted in increased resolution of the vortex generated from this 
region. Kern's results are compared in Figures 11 and 12 for 10 and 
16 degrees angle of attack.  At 10 degrees, the strake and wing 
vortices have begun to merge over the wing surface, but Kern shows 
greater detail regarding the portion of the strake vortex that remains 
independent of the wing vortex.   This is consistent with the difference 
in grid clustering.   In Figure 12, at 16 degrees, the two results are 
very similar.   The only noticeable difference is the occurrence of a few 
trace particles emanating from the strake-wing junction in Kern's 
results that are convected downstream with less movement away from 
the centerline.  Again, this is probably the effects of denser grid 
clustering which is capable of resolving the large gradients that exist 
in the separating shear layer at the leading edge. Although the 
increased grid clustering shows better detail of the leading edge 



vortex, the major trends in vortex migration and breakdown remain 
highly similar between the two studies. 

Figures 13 and 14 show the swirl magnitude and pressure 
coefficient, respectively, for the flow field above the wing at two chord 
locations.   Both figures show cross-sections of the flow at 55% (pre- 
burst) and 85% (post-burst) chord.   In Figure 13 the magnitude of the 
swirl drops significantly downstream of the breakdown location. 
Likewise, the pressure coefficient increases after breakdown 
indicating a decrease in the local velocity.  Additionally, the contour 
levels for the swirl and the pressure coefficient are more intense and 
structured upstream of the vortex burst region indicating a well 
defined vortex pattern. 

The results obtained are the final steps in the development of an 
aerodynamic model for use in determining the structural response of 
the double-delta wing.   Small enhancements to the grid to improve 
the code's performance will be made, including less grid points to 
reduce the computational time and increased grid clustering along the 
leading edge.  Additionally, viscous solutions will be obtained with the 
TEAM code to better understand the role viscosity plays in the vortex 
breakdown phenomenon and in the development of secondary and 
tertiary vortices.   Finally, the TEAM code results will be used as input 
to PATRAN to preprocess and post-process data for NASTRAN. 
NASTRAN will be used to calculate the dynamic loads and deflections 
caused by vortex breakdown and vortices impinging on the lifting 
surfaces. 
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Figure 3. Particle trace colored by mach number, oc=0.0 degrees. 
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Table 1. Slot Temperature Results 

Baseline Model Peak Temp = 576 °F 

w/h Peak Temp °F Source of Heating Data 

Cavity Windward Wall 

2.0 1,486 Figure 1 (Reference 1) 

2.0 1,458 Figure 4 (Reference 1) 

1.0 1,327 Figure 4 (Reference 1) 

0.5 543 Figure 4 (Reference 1) 

Cavity Leeward Wall 

2.0 755 Figure 2 (Reference 1) 

2.0 854 Figure 4 (Reference 1) 

1.0 592 Figure 4 (Reference 1) 

0.5 494 Figure 4 (Reference 1) 
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4.0 Summary 

NASTRAN finite element models of an actively cooled leading edge were created to 

analyze joint/seal concepts. The heat exchanger designs analyzed utilized convection cooling 

employing cryogenic fluid flow in channels in the leading edge panels. Analysis was 

conducted using both CSA NASTRAN and MSC NASTRAN on Wright-Patterson computer 

systems. Thermal analyses, involving convection, conduction, and radiation, were run to 

obtain steady state temperature distributions in the finite element model. 

A plain two-dimensional representation of a section across the channels of a simple 

lap joint between two cooling panels was used to analyze convection cooling in an Incoloy 

909 design. An analysis was also performed on the model to assess the effects of radiation in 

providing additional cooling or heating on the surface and in the slot between two panels. 

A 3-D model was created and used to investigate the 3-D effect where the heating flux 

on the leading edge changes rapidly with distance from the stagnation area on the leading 

edge tip, whereas the 2-D model implicitly assumed the flux to be constant along the length 

of the channels. The coolant coefficient and temperature of the coolant was also varied along 

the channels. Heat exchanger designs using AMZIRC, Incoloy 909, and NARloy-Z were 

created and analyzed. 

A model with a variable width slot between the two adjacent edges was created and 

analyzed to investigate the effect of aerodynamic heating in the slot between two heat 

exchanger panels. This model was used to investigate heating in the slot as a function of the 

slot width and depth and determine the effect on the temperature distribution in the heat 

exchanger panels. The material simulated in this analysis was RSR 654. This analysis 

showed that the slot width needs to be controlled to less than 0.05 inches. 
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Figure 13. Swirl magnitude at .55c and .85c, a=27.4 degrees. 
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PRESSURE COEFFICIENT 

76/40 DOUBLE OELTR UINB PLRNFORM 

BRIO GENERATED BV GRIOGEN/TEHN FLOU SOLUER 

CONTOUR LEÜELS 
-4. 
-3. 
-3. 
-3. 

00000 
80000 
60000 
.40000 

-3.2DDD0 
-3.00000 
-2.80000 
-2.60000 
-2. 40000 
-2.20000 
-2.00000 
-t.80U0Ü 

-Q.600QD 
-0.40000 
-0.20000 
0.00000 
0.20000 
0.40000 
0.60000 

0.250 riRCH 

2?. 40 OEG RLPHfl 

1371. TINE 

45x69x45 8RI0 

Figure 14. Pressure coefficient at .55c and .85c, a=27.4 degrees. 
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